
Performance of Service-Discovery
Architectures in Response to Node Failures

Chris Dabrowski, Kevin Mills, Andrew Rukhin

2003 International Conference on
Software Engineering Research and Practice

(SERP'03)
Las Vegas, Nevada

June 23-26, 2003

Dynamic discovery protocols…
enable distributed software components

(1) to discover each other without prior arrangement,
(2) to express opportunities for collaboration,
(3) to compose themselves into larger collections that cooperate

to meet an application need, and
(4) to detect and adapt to failures.

3-Party
Design

2-Party
Design

Adaptive
2/3-Party
Design

Vertically
Integrated
3-Party
Design

Network-
Dependent
3-Party Design Network-Dependent

2-Party Design

Some examples:

Core Network

• SU is Service User
• SM is Service Manager

“Actuators” receive
ad-hoc requests

“Slow” sensors send
readings every 30 seconds

SU

Mobile command post
Service User dynamically
locates and combines
sensors and actuators

SM
SM

SM
SM

SM

SM

SM
SM

“Fast” sensors send
readings every 2 seconds

Service Discovery Protocols
in Distributed Environments

Enable dynamic location and combination of remote services to Enable dynamic location and combination of remote services to
perform critical, realperform critical, real--time taskstime tasks

SM

SM
SM

SM

Core
Network

• SU is Service User
• SM is Service Manager

“Actuators” receive
ad-hoc requests

“Slow” sensors send
readings every 30 seconds

SU

SM

SM

SM

SM
SM

SM
SM

“Fast” sensors send
readings every 2 seconds

How Well Do Service Discovery Protocols
Replace Services Lost to Node Failure?

Mobile command post
Service User dynamically
locates and combines
sensors and actuators

SM SM
SM

SM
SM

SUSM

Two generic architectures underlie
most service discovery protocols

SU

SM

SCM

Discovery
Discovery

Invocation
Invocation

In two-party architectures, Service Users discover Service Managers directly and
invoke services
In three-party architectures, both Service Managers and Service Users discover
Service Cache Managers (SCMs); SU obtains services through SCM intermediary
and then invokes

Three-party architectureTwo-party architecture
• SU is Service User
• SM is Service Manager
• SCM is Service Cache Manager

Two generic architectures (continued)

Two-party architecture

Behavior
adapted from
Jini

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast
Sensor

SM

Fast
Sensor

SM

Slow
Sensor

SM

Slow
Sensor

SM

Actuator
SM

Actuator
SM

Service
User

Service User (1)

1 to 3
SCMs

Three-party architecture

Discovery (2-party): SU discovers SMs through multicast search strategies
– Registration on SM: SU registers for notification of change in service (renews every 300s)

Discovery (3-party): both SMs and SUs discover SCMs through multicast search
– Registration on SCM: SMs register services (renews every 300s for fast sensors; 60s for

slow sensors and actuators); SU registers notification requests (renews every 300s)
Failure Detection by SU: through (1) SM non-response or (2) failure of registration
renewal (heartbeat mechanism) and notification in 3-party case

– Recovery:: 2-party SU multicasts queries to SMs every 120s
– Recovery:: 3-party SU queries SCMs for service; If SCMs lost, SU listens for SCM

announcements (every 120s) & SMs do the same

Behavior
adapted
from UPnP

Experiment Design

Q = end of quiescent period (60 s)
D = propagation deadline (1800 s)
R = failure rate (variable from 0% - 80% in 10% increments)

TIME

0 Q D

Initial
Discovery
occurs

Node failure randomly occurs for SMs and SCMs using MTF=
(1-R)*D and “stepped” normal distribution. Three failure
durations: short, medium, and long. SU is not failed.

SDP should provide Service User with needed
services if they are available

FOR All (SM, SU, SD)
SD [capabilities] isElementOf SM managed-services
SD [capabilities] isElementOf SU required-services
ResourceNeeded (SU, SD)

implies
(SM, SD) isElementOf SU discovered-services

Recovering and replacing failed services

Service User should hold services that are
being actively managed (e.g. available)

FOR All (SM, SU, SD)
(SM, SD) isElementOf SU discovered-services

implies
SD isElementOf SM managed-services

Detecting Failure of Services in Use

Goal of SU is to be functional; e.g, to continually possess one instance of each
type of service (“fast” sensor, “slow” sensor, & actuator).

– When >= 1 type of sensor is missing, SU is non-functional
– To focus on alternative architectures & associated processes, mechanisms such as

service caching factored out
Formal conditions for measuring latency in detecting service failure and replacing
lost service provide basis for metrics

Modeling and Analysis Approach: Use Rapide ADL to Model
and Understand Dynamics of Service Discovery Protocols

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
(SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)

IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure andrecovery.
ACTION
IN Send_Requests(),

BeginDirectedDiscovery();
BEHAVIOR

action animation_Iam (name: string);
MySourceID : VAR IP_Address;
PV : VAR ProtocolVersion;

Behavior
Model

Analyze
POSETs

Topology

Execute with
Rapide

For All (SM, SD, SCM):
(SM, SD) IsEleme ntOf SCM registered -services (CC1)
implies SCM IsElementOf SM discovered -SCMs

For All (SM, SD, SCM):
SCM IsEl ementOf SM discovered -SCMs & (CC2)
(SD) IsElementOf SM managed -services
implies (SM, SD) IsElementO f SCM registered -services

For All (SM, SD, SCM):
SCM IsElementOf SM discovered -SCMs & (CC3)
(SM, SD) IsElementOf SCM registered -services &
NOT (SCM IsElementOf SM persistent -list)
implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested -notifications & (CC4)
(SM, SD) IsElement Of SCM registered -services &
Matches((SM, SD), (SU,NR))
implies (SM, SD) IsElementOf SU matched -services

For All (SM, SD, SCM):
(SM, SD) IsEleme ntOf SCM registered -services (CC1)
implies SCM IsElementOf SM discovered -SCMs

For All (SM, SD, SCM):
SCM IsEl ementOf SM discovered -SCMs & (CC2)
(SD) IsElementOf SM managed -services
implies (SM, SD) IsElementO f SCM registered -services

For All (SM, SD, SCM):
SCM IsElementOf SM discovered -SCMs & (CC3)
(SM, SD) IsElementOf SCM registered -services &
NOT (SCM IsElementOf SM persistent -list)
implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested -notifications & (CC4)
(SM, SD) IsElement Of SCM registered -services &
Matches((SM, SD), (SU,NR))
implies (SM, SD) IsElementOf SU matched -services

Consistency
Conditions

Model

Analyze
POSETs

Use metrics to
Assess Correctness
& Performance

Remote Method Invocation

UnicastLinks

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

UnicastLinks

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

UnicastLinks

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

UnicastLinks

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

Topology Scenario

Execute with
Rapide

For All (SM, SD, SCM):
(SM, SD) IsEleme ntOf SCM registered -services (CC1)
implies SCM IsElementOf SM discovered -SCMs

For All (SM, SD, SCM):
SCM IsEl ementOf SM discovered -SCMs & (CC2)
(SD) IsElementOf SM managed -services
implies (SM, SD) IsElementO f SCM registered -services

For All (SM, SD, SCM):
SCM IsElementOf SM discovered -SCMs & (CC3)
(SM, SD) IsElementOf SCM registered -services &
NOT (SCM IsElementOf SM persistent -list)
implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested -notifications & (CC4)
(SM, SD) IsElement Of SCM registered -services &
Matches((SM, SD), (SU,NR))
implies (SM, SD) IsElementOf SU matched -services

For All (SM, SD, SCM):
(SM, SD) IsEleme ntOf SCM registered -services (CC1)
implies SCM IsElementOf SM discovered -SCMs

For All (SM, SD, SCM):
SCM IsEl ementOf SM discovered -SCMs & (CC2)
(SD) IsElementOf SM managed -services
implies (SM, SD) IsElementO f SCM registered -services

For All (SM, SD, SCM):
SCM IsElementOf SM discovered -SCMs & (CC3)
(SM, SD) IsElementOf SCM registered -services &
NOT (SCM IsElementOf SM persistent -list)
implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested -notifications & (CC4)
(SM, SD) IsElement Of SCM registered -services &
Matches((SM, SD), (SU,NR))
implies (SM, SD) IsElementOf SU matched -services

Consistency
Conditions

Functional Functional Effectiveness of Twoof Two--Party vs. ThreeParty vs. Three--Party Party
When One SM of Each Type is Always AvailableWhen One SM of Each Type is Always Available

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Two Party

Three Party (1 SCM)

Three Party (2 SCMs)

Three Party (3 SCMs)

Measures the the proportion of time the
Service User possesses the operational
set of remote services needed to
accomplish its task during D .

Replacement case with
60 repetitions per data point

0 20 40 60 80
Failure Rate (%)

Two Party
Three Party, 1 SCM
Three Party, 2 SCMs
Three Party, 3 SCMs

Slope = -10.55

Slope = -6.97

Slope = -1.64

Slope = +2.37

Efficiency of Two-Party vs. Three-Party When One hen One
SM of Each Type is Always AvailableSM of Each Type is Always Available

Measures the the average number of
messages required during D.

Replacement case with
30 repetitions per data point

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Detection Latency
Recovery Latency
Non-Functional Time

Detection and Recovery Latencies for Two-Party vs. Three-
Party When One SM of Each Type is Always AvailableWhen One SM of Each Type is Always Available

Two-party case

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Detection Latency
Recovery Latency
Non-Functional Time

Three-party case with 3 SCMs

-- Detection LatencyDetection Latency -- delay in delay in
detection failuredetection failure

-- Recovery LatencyRecovery Latency –– delay delay
in restoring required servicesin restoring required services

--> Detection latency was > Detection latency was
dominant in 2dominant in 2--party case; in party case; in
33--party case, proportion of party case, proportion of
recovery latency increased recovery latency increased
as failure rate increased due as failure rate increased due
to unavailability of SCMsto unavailability of SCMs

Decomposing nonDecomposing non--functional functional
time:time:

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Failure Rate (%)

Two Party
Three Party (3 SCMs)
Three Party (2 SCMs)
Three Party (1 SCM)

Functional Functional Effectiveness of Twoof Two--Party vs. ThreeParty vs. Three--
Party When All Party When All SMs SMs of Each Type Can Failof Each Type Can Fail

Measures the the proportion of time the
Service User possesses the operational
set of remote services needed to
accomplish its task during D .

Replacement case with
30 repetitions per data point

Conclusions and Future WorkConclusions and Future Work

Service discovery protocols possess basic capabilities to enableService discovery protocols possess basic capabilities to enable
failure detection and recovery under conditions of node failure.failure detection and recovery under conditions of node failure.
Results of experiments in node failure: Results of experiments in node failure:
–– ThreeThree--party SCM is potential point of vulnerability at very high party SCM is potential point of vulnerability at very high

failure rates; reduced functional effectivenessfailure rates; reduced functional effectiveness
–– Effectiveness of threeEffectiveness of three--party architecture approached level of twoparty architecture approached level of two--

party architecture as number of SCMs were addedparty architecture as number of SCMs were added
–– TwoTwo--party architecture showed better efficiency than threeparty architecture showed better efficiency than three--party party

architecture; redundant SCMs increases overhead (though subject architecture; redundant SCMs increases overhead (though subject
to protocol variations in messaging)to protocol variations in messaging)

–– Performance of both architectures can be improved by optimizing Performance of both architectures can be improved by optimizing
heartbeat mechanisms (registration refresh rate)heartbeat mechanisms (registration refresh rate)

Ongoing and Future WorkOngoing and Future Work
–– Repeat experiments with adaptable 3Repeat experiments with adaptable 3--party architecture that party architecture that

switches to 2switches to 2--party mode when no SCMs can be found (SLP) party mode when no SCMs can be found (SLP)
–– Investigate robustness of service discovery strategies in largerInvestigate robustness of service discovery strategies in larger

scale environments.scale environments.

